

LanzaTech Alcohol to Jet Technology

Speaker: Prabhakar Nair

Date: September 4 & 5, 2018 Mexico City

Energy can be Carbon Free

Aviation Fuel needs Carbon

Recycling Carbon

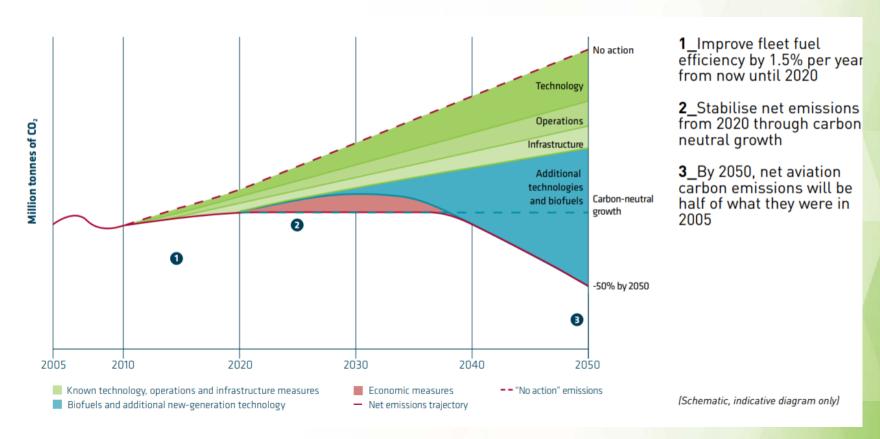
Status Shougang Commercial Plant

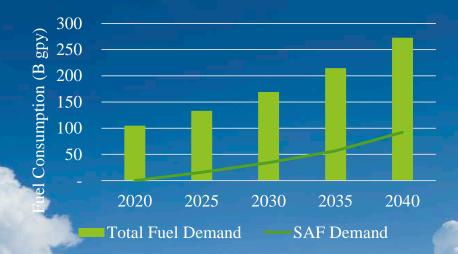
Commercial Projects under Implementation

SWAYANA

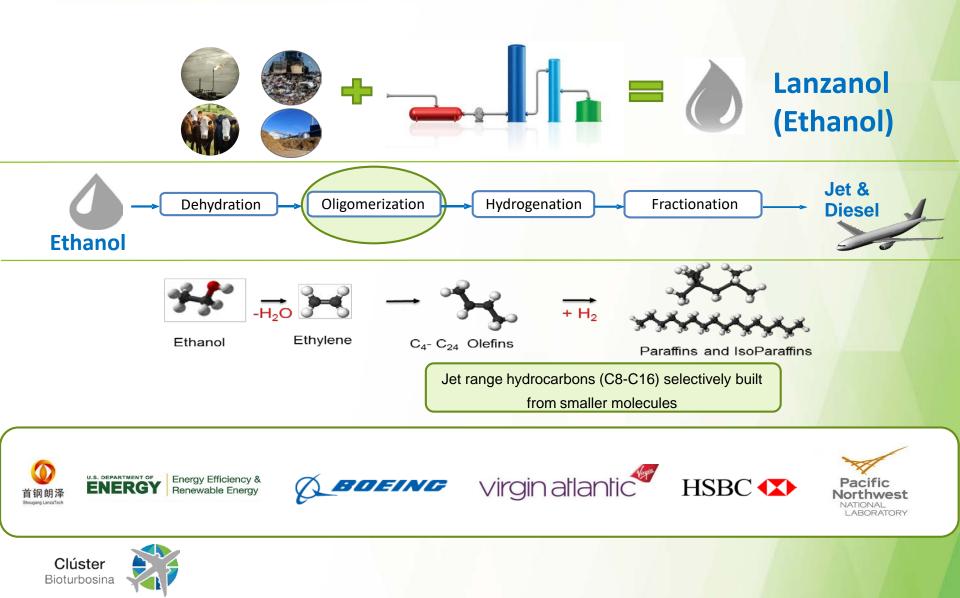
South Africa **52k MTA** 2020

India **34k MTA** 2020


Industrial Off Gases


CORSIA Commitments

Graph source: <u>Reducing Emissions From Aviation Through Carbon Neutral Growth From 2020</u> (ICAO 2013)


Sustainable Aviation Fuel will Play a Key Role

SAF will need to rise to >30% of total jet fuel consumption by 2040 to meet ICAO commitments

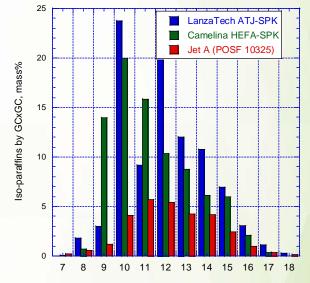
From Waste to Wing

LanzaTech Jet Production Campaign

Increased Run Time and Production Rate

Improved Product Yield Reduced Operating Cost Lower Cost Commercial Product

LanzaTech Produced... ✓ 4000 gallons Jet ✓ 600 gallons Diesel

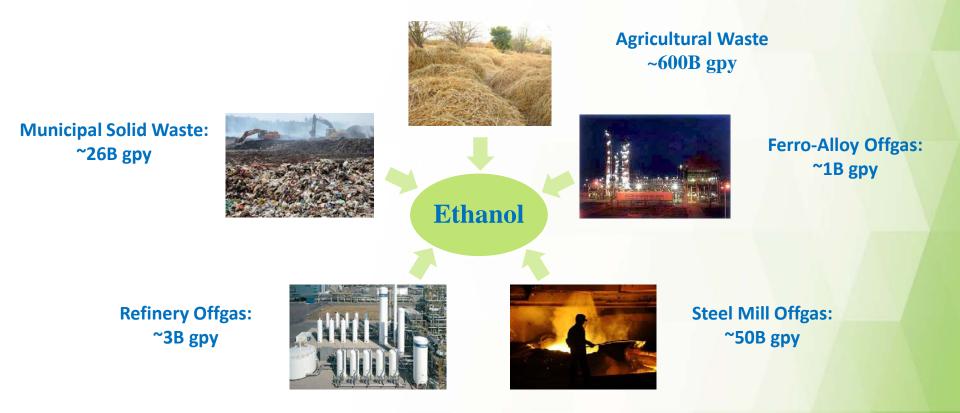

- Demonstrated feedstock flexibility
 - 1,500 gal from waste gas ethanol (Lanzanol)
 - 2,500 gal from Grain Ethanol
 - Waste gas ethanol (Lanzanol) produced in an RSB-certified demonstration facility
 - Shougang-LanzaTech 100,000 gal/yr China demonstration plant

LanzaTech Jet Property Highlights

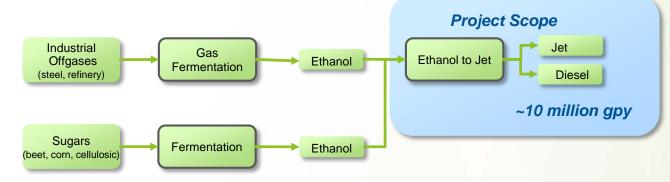
Fuel Property	Jet A Spec	LanzaTech ATJ-SPK	50/50% v with Jet A
Freeze Point, °C	-40 max	-61	-54
Energy Density, MJ/kg	42.8 min	44.4	43.8
Thermal Stability	Baseline	Excellent	Excellent
Viscosity @ -40 °C mm²/sec	12 max	7.0	9.3
Hydrogen %	13.4 min	15.1	14.5
Aromatics %	8 min, 25 max	Nil	8.8
Sulfur, total mass %	0.30 max	< 0.001	0.02

Meets or Exceeds Critical Jet Fuel Specifications Neat fuel primarily isoparaffins with <0.2% aromatics

Carbon number range similar to conventional jet fuel and other SPK's


On April 1, 2018 ASTM Intl. Revised D7566 ATJ SPK Annex A5

- Added Ethanol as a feedstock
- Increased final blend ratio to max 50 %


Global Ethanol Feedstock Sources

Ethanol Provides Path to Sustainable Aviation Fuel from Abundant Wastes and Residues

US DOE Pre-Commercial Project

Project Objectives:

- Demonstrate the ability to convert ethanol from multiple feedstocks into sustainable aviation fuel
- Develop process and operational parameters for commercial ethanol-to-jet units
- Produce commercial quantities of jet and diesel fuel

Produce commercial quantities of sustainable aviation fuel for offtake in Q1 2020

UK Department for Transport Feasibility Study

- Commercial-scale ATJ production from waste-based ethanol
- Includes ethanol from steel mill waste gas fermentation
- Site selection and project planning underway

Stage 1 Outcome: Financeable Commercial-Scale ATJ Project in UK

Direction of Sustainable Aviation Fuel

- Feedstock cost, availability, and sustainability are key
- Need abundant, low cost feedstocks that do not compete with food
- Wastes and residues are a major resource for SAF
- Ethanol-based ATJ offers an opportunity to produce jet with > 70% GHG reductions from sustainable crops, wastes and residues appropriate for each region
- Competitive SAF economics will come from expanding feedstock sources, production capacity and market demand

All sustainable solutions are needed to meet growing global demand

THANK YOU FOR YOUR ATTENTION